Telegram Group & Telegram Channel
Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/69
Create:
Last Update:

Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/69

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA